Hypergeometric D-modules and Twisted Gauss–manin Systems
نویسنده
چکیده
The Euler–Koszul complex is the fundamental tool in the homological study of A-hypergeometric differential systems and functions. We compare Euler–Koszul homology with D-module direct images from the torus to the base space through orbits in the corresponding toric variety. Our approach generalizes a result by Gel’fand et al. [GKZ90, Thm. 4.6] and yields a simpler, more algebraic proof. In the process we extend the Euler–Koszul functor to a category of infinite toric modules and describe multigraded localizations of Euler–Koszul homology.
منابع مشابه
ON AN EXTENSION OF A QUADRATIC TRANSFORMATION FORMULA DUE TO GAUSS
The aim of this research note is to prove the following new transformation formula begin{equation*} (1-x)^{-2a},_{3}F_{2}left[begin{array}{ccccc} a, & a+frac{1}{2}, & d+1 & & \ & & & ; & -frac{4x}{(1-x)^{2}} \ & c+1, & d & & end{array}right] \ =,_{4}F_{3}left[begin{array}{cccccc} 2a, & 2a-c, & a-A+1, & a+A+1 & & \ & & & & ; & -x \ & c+1, & a-A, & a+A & & end{array} right], end{equation*} wher...
متن کاملar X iv : m at h / 99 06 12 9 v 2 [ m at h . A G ] 1 4 D ec 1 99 9 ALGEBRAIC GAUSS - MANIN SYSTEMS AND BRIESKORN MODULES
We study the algebraic Gauss-Manin system and the algebraic Brieskorn module associated to a polynomial mapping with isolated singularities. Since the algebraic GaussManin system does not contain any information on the cohomology of singular fibers, we first construct a non quasi-coherent sheaf which gives the cohomology of every fiber. Then we study the algebraic Brieskorn module, and show tha...
متن کاملar X iv : m at h / 99 06 12 9 v 1 [ m at h . A G ] 1 8 Ju n 19 99 ALGEBRAIC GAUSS - MANIN SYSTEMS AND BRIESKORN MODULES
We study the algebraic Gauss-Manin system and the algebraic Brieskorn module associated to a polynomial mapping with isolated singularities. Since the algebraic GaussManin system does not contain any information on the cohomology of singular fibers, we construct a non quasi-coherent sheaf which gives the cohomology of every fiber. Then we study the algebraic Brieskorn module by comparing it wit...
متن کاملCollege of Arts and Sciences Third Order a - Hypergeometric Functions
To solve globally bounded order 3 linear differential equations with rational function coefficients, this thesis introduces a partial 3F2-solver (Section 3.2) and F1-solver (Chapter 4) where 3F2 is the hypergeometric function 3F2(a1, a2, a3; b1, b2 |x) and F1 is the Appell’s F1(a, b1, b2, c |x, y). To investigate the relations among order 3 multivariate hypergeometric functions, this thesis pre...
متن کاملGauss-manin Connections for Arrangements, Iii Formal Connections
We study the Gauss-Manin connection for the moduli space of an arrangement of complex hyperplanes in the cohomology of a complex rank one local system. We define formal Gauss-Manin connection matrices in the Aomoto complex and prove that, for all arrangements and all local systems, these formal connection matrices specialize to Gauss-Manin connection matrices.
متن کامل